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Abstract. Aging, memories after temperature sweeps (double ramp and double jump) and memories after
electric field sweeps (double ramp and double jump) were studied as a function of frequency. The exper-
iments were performed at low temperatures in the ferroelectric phase of two potassium niobo-tantalate
crystals K Ta1−xNbxO3 with the niobium concentration x close to 0.02. Five complex quantities are de-
fined, which respectively characterize these five phenomena. The main feature is that isothermal aging
and memories after temperature sweeps have exactly the same frequency dependence while after electric
field sweeps the frequency dependence is clearly different. Additionally, the role of the characteristics of
the sweeps (amplitudes, rates of changes, durations) on these memories were measured. The observed
behaviours are discussed in term of a model which attributes the time dependent effects to growth and
reconformation of ferroelectric domains and takes into account that the domain wall motion is hindered
by pinning sites. The difference in the frequency dependences against the nature of the swept parameters
shows that the distribution of the reconformation time is sensitive to the biasing electric field.

PACS. 77.22.Gm Dielectric loss and relaxation – 78.30.Ly Disordered solids

1 Introduction

Aging is a very common phenomenom. It manifests it-
self by the evolution, generally slow and depending on the
sample history, of some properties of the material. In many
materials this spontaneous evolution originates in rear-
rangements among disordered and frustrated states. This
is called physical aging. Annealing above some given tem-
perature (generally a phase transition temperature) is able
to cure physical aging. This kind of reversibility after an ir-
reversible evolution allows to use exactly the same sample
in a series of experiments, all starting from the same state.
Among this type of materials are structural glasses [1,2],
spin-glasses [3–6] and disordered dielectrics [7–11].

Associated with aging, a memory phenomenon has
been recently mentioned about various materials. The
term was used for experiments in the modulated phase
of thiourea [12], in plexiglass (PMMA) [13], in the
SG phase of CdCr1.9In0.1S4 [14], Ag(11%Mn) [15] and
Fe0.5Mn0.5TiO3 [16], in the ferroelectric phase of potas-
sium niobo-tantalate [17], in relaxor ferroelectrics [10,18],
in quartz powders [19], etc. Indeed, it seems that the
meaning of the term may be different according to the
concerned experiment. Consequently, there is a need for
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a precise, however general, definition of what is meant by
memory in the present study.

After a sample has been prepared and all the relevant
intensive parameters Yλ (for instance: temperature, me-
chanical stress, magnetic field, electric field...) are fixed,
it is allowed to freely evolve. This evolution, which de-
pends on the sample preparation, is aging. It begins at
t = 0 and it is followed in recording some extensive pa-
rameter Xµ(t) or susceptibility χν(t) during the lapse of
time t1 when all the intensive parameters are held at a
constant (or plateau) value. Then one of the relevant in-
tensive parameters, simply written Y , is changed. Starting
from Y (t1) = Y (0), it comes back to its initial value a fi-
nite time ∆t later, in such a way that Y (t1 +∆t) = Y (t1).
There is memory if the extensive parameter Xµ(t) or the
susceptibility χν(t) presents at the time t = t1 +∆t some
visible sequel of its aging between t = 0 and t = t1. It is
this sequel that has to be precisely defined, taking into ac-
count the form of the time dependence of the parameter Y
during the lapse ∆t.

The present paper is essentially a comparative study
of aging, memory after a temperature sweep and memory
after an electric field sweep (the variable intensive param-
eter is either the temperature T or the electric field E).
The study was performed in the disordered ferroelectric
phase of a potassium niobo-tantalate (KTN) crystal. Its
aim was to clarify the role of the ferroelectric domain walls
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in aging and memory. A clear proof of aging is the depen-
dence of an alternative susceptibility χ(ω, t) on time, since
this corresponds to a non stationary temporal susceptibil-
ity χ(t′, t). In our study we have measured the complex
dielectric constant ε(ω, t) as a function both of time and
frequency. The memory effect has already been observed
in KTN [17,20] and the dependence on frequency after
particular temperature sweeps (double ramps) has been
studied [21,22]. The new experiments reported here con-
cern different sweep types with two variable parameters
(temperature T and electric field E), focusing our atten-
tion on the differences between the effects of T and E.
Additionally, the sweep parameters have been systemati-
cally examined.

2 Experimental method

The pure potassium tantalate KTaO3 crystal belongs to
the cubic perovskite family. If a fraction x of tantalum ions
is randomly substituted by isoelectronic niobium ions, the
KTa1−xNbxO3 crystal thus obtained possesses ferroelec-
tric phases if the niobium concentration x is larger than
xc ∼= 0.008. As usual, we deduce the niobium concentra-
tion of our sample from the phase diagram [23] once their
transition temperature Ttr is known. This temperature is
defined by the maxima of the real part ε′ and the imag-
inary part ε′′ of the dielectric constant which are almost
independent of the measuring frequency f . Accordingly,
from the measured transition temperature Ttr = 38 K, we
infer that the niobium concentration is x = 0.027 (sam-
ple B). The experiments reported below extend previous
experiments [21,22] performed on another sample (sam-
ple A) where Ttr = 31 K and x = 0.022. They all were per-
formed at temperatures T < 25 K, in the phase which is
ferroelectric, but locally disordered around the randomly
substituted niobium ions.

Using a Hewlett-Packard 4192A impedance analyser,
we have measured the electric capacitance and the dielec-
tric loss at several frequencies f , in the range between
1 kHz and 1 MHz. They can easily be transformed into
the real part ε′ and the imaginary part ε′′ of the complex
dielectric constant. Practically, the data are given in terms
of the complex capacitance C = C′− iC′′, proportional to
ε = ε′ − iε′′. The rule is that C = 1 pF corresponds to
ε ∼= 16 for sample B.

The impedance analyser allows to apply a direct volt-
age between the electrodes deposited on the sample. It
induces a field E applied along a [100] direction of the
crystal in its cubic phase. The electric field in the sample
is 1.2 kV m−1 for sample B when 1 volt is applied. The
characteristic switch-on and switch-off times are of the
order of 30 ms for weak voltage (lower than 5 V). This
time is shorter than the time which governs temperature
jumps (about 10 s for |δT | ≤ 0.4 K). This fact introduces
a constraint on the temperature double jump experiments
which cannot have a too short temperature plateau, in
order that they still have a meaning.

3 Thermal and electric histories

All our experiments begin with annealing the sample near
55 K and rapidly cooling it across the transition temper-
ature Ttr down to Tch

∼= 22 K where the cooling rate is
changed. Then cooling is continued at the moderate con-
stant rate dT/dt = rc with rc = −6 mK s−1 down to the
plateau temperature T1. Several types of experiments were
performed.

In some experiments (isothermal and iso-field aging)
all the parameters are held constant. Then the fixed values
of the two intensive parameters T and E are explicitly
written as arguments of the capacitance C(T1, E1, t, f).
In other experiments, only one parameter is varied. It is
written Y (t) alone (which stands for either T (t) or E(t))
in C(Y, t, f).

3.1 Isothermal and iso-field aging

Our first measurement is to record the decrease of the
complex capacitance of the sample when the intensive pa-
rameters are held constant at T1 and E1. This evolution
is followed for the lapse of time t1. This is aging; it reads

∆C(T1, E1, t1, f) = C(T1, E1, t1, f)− C(T1, E1, 0, f) ≤ 0.

3.2 Preliminary remarks on memory definition

1) In the experiments reported below, two procedures (two
sweeps) were used. In the first case (double ramp) Y (t)
is changed by two opposite linear ramps: from Y (0) to
Y (0) − ∆Y between t = t1 and t = t1 + ∆t/2 and from
Y (0)−∆Y to Y (0) between t = t1 +∆t/2 and t = t1 +∆t.
In the second case (double jump) the variation is a sudden
jump from Y (0) to Y (0)−∆Y held during ∆t and followed
by a sudden return to Y (0). More generally, we may write
Y (t) = Y (0)−∆Y F (t) where F (t) is a function such that
F (t1) = 0 and F (t1 +∆t) = 0. In the two particular varia-
tions quoted just above, instead of F (t) we write V (t) and
U(t) because these two characters mimic a double ramp
and a double jump, respectively. In both cases the mea-
sured susceptibility χν(t) (here, the complex capacitance
C(t) which is proportional to the complex dielectric con-
stant ε(t)) decreases during aging, memory manifests itself
by a dip in the region of the Y space where the initial con-
dition is recovered. In order to simply characterize mem-
ory after a sweep, described by the function F (t), of the
intensive parameter Y with a unique (complex) number,
we define for each procedure a memory measure MY/F .

2) In order to eliminate as well as possible some spuri-
ous effects such as the cumulative aging which occurs dur-
ing the sweeps, any memory experiment is indeed made
up of two records: one with isothermal and iso-field aging
(with plateau), hereafter called the experiment; the other
without isothermal and iso-field aging (without plateau),
hereafter called the reference. The spurious effects are
eliminated by the difference between the two records as
explained below.
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3) Hereafter, we write ∆t− for the time immediately
before the return jump and ∆t+ for the time immedi-
ately after it. Aging induces the capacitance decrease
∆C(T1, E1, t1, f) in the sample. When the extreme condi-
tion Y = Y2 (this means T = T2 or E = E2) is left the
sequel of aging is either

δC(Y2) = C(Y2, t1 +∆t/2, f)− C(Y2,∆t/2, f),

or

δC(Y2) = C(Y2, t1 +∆t−, f)− C(Y2,∆t
−, f).

These differences are the apparent memory of aging.
When the aging condition Y = Y1 (this means T = T1

and E = E1) is restored the sequel of aging are either

δC(Y1) = C(Y1, t1 +∆t, f)− C(Y1,∆t, f),

or

δC(Y1) = C(Y1, t1 +∆t+, f)− C(Y1,∆t
+, f).

These differences are the total memory of aging.
For the four types of sweep used we adopt as defini-

tions of memory the differences between the total mem-
ory and the apparent memory. They are noted MT/V ,
ME/V ,MT/U andME/U . Since they are not visible when
Y = Y2, they are the hidden memories of aging. Obviously,
if Y1 − Y2 → 0 both the apparent memories and the to-
tal memories tend towards∆C(Y1, t1, f) and therefore the
hidden memories go to 0.

We emphasize that in the rest of the present paper the
word “memory” actually means “hidden memory”. In or-
der that the definition has some interest, it requires some
reversibility: a quantity which seems lost can be (at least
partly) recovered when the initial conditions are restored.
Indeed, our experiments on memory in KTN do not con-
stitute a unique case in the sense used here: the chromium
thiospinel Cd Cr1.9 In0.1 S4 in its two phases [24] gives an-
other example of such a reversibility.

3.3 Memory after a double ramp

The first record (the experiment) is composed of three
steps: i) a plateau at temperature and field maintained
constant during t1; ii) a change of one of these parameters
from Y1 to Y2 at the constant rate dY/dt = y; iii) a change
at the opposite rate dY/dt = −y to Y1 and further. The
two important capacitance values are C(Y2, t1 +∆t/2, f)
and C(Y1, t1 + ∆t, f) with ∆t/2 = |(Y2 − Y1)/y| which
are respectively obtained when the parameter Y is at its
extremum Y2 and when it passes again through Y1. In
the second record (the reference), step i) is omitted (no
plateau or t1 = 0) but step ii and step iii are the same
as in the first one. Here the two important values are
C(Y2,∆t/2, f) and C(Y1,∆t, f).

We adopt as the measure of memory after a double
ramp of the intensive parameter Y the complex quantity

MY/V defined as

MY/V = [C(Y1, t1 +∆t, f)− C(Y1,∆t, f)]

− [C(Y2, t1 +∆t/2, f)− C(Y2,∆t/2, f)] .

We notice that memory after a temperature change is
observable only if T2 < T1 (upon cooling) while it is seen
after a field change if E1 < E2 or E1 > E2 as well. The
corresponding rates of change are written dT/dt = ±r
and dE/dt = ±s.

3.4 Memory after a double jump

The first record (the experiment) is composed of three
steps: i) a plateau at temperature and field maintained
constant during t1; ii) a jump of one of these parameters
from Y1 to Y2 maintained during ∆t; iii) a sudden return
to Y1. Then the two important capacitance values read
C(Y2, t1 + ∆t−, f) and C(Y1, t1 + ∆t+, f) which are re-
spectively obtained when the parameter Y leaves the lower
plateau at Y2 and when it arrives again at Y1. In the sec-
ond record (the reference), step i is omitted (no plateau
or t1 = 0) but step ii and step iii are the same as in the
first one. Here the two important values are C(Y2,∆t

−, f)
and C(Y1,∆t

+, f).
We adopt as the measure of memory after a jump of

the parameter Y the complex quantityMY/U defined as

MY/U =
[
C(Y1, t1 +∆t+, f)− C(Y1,∆t

+, f)
]

−
[
C(Y2, t1 +∆t−, f)− C(Y2,∆t

−, f)
]
.

3.5 Further remarks

1) It could be thought that the differences

dC(Y1) = C(Y1, t1 +∆t, f)− C(Y1,∆t, f)

and

dC(Y1) = C(Y1, t+∆t+, f)− C(Y1,∆t
+, f)

between the values immediately after the sweeps (one with
plateau, the other without plateau) are simple and good
definitions of memory. Indeed, these differences only take
into account the state of the sample at the end of the two
sweeps, both for Y = Y1 and neglect what happens before.
For instance, if memory is held during all the sweep or if
it is reversibly lost for Y = Y2 and fully restored when
coming back at Y = Y1 would give dC(Y1) = ∆C(Y1, t1, f)
in both cases: the real process in action is masked by these
definitions.

2) According to the definitions, the real part and the
imaginary part of the complex quantities ∆C, MT/V ,
ME/V , MT/U and ME/U are negative. However, their
variations often need logarithmic plots. Consequently, in
several figures their sign is changed although this is not
explicitly mentioned.



16 The European Physical Journal B

Fig. 1. Log-log plot of the real part of three complex quantities
measured as a function of frequency f in sample B. From top
to bottom the three sets of datapoints are: i) the real part ∆C′

of aging (squares) with the fit which gives ν = 0.135 ± 0.005;
ii) the real partM′T/V of memory after a temperature double
ramp (diamonds) with the fit which gives δ = 0.145 ± 0.01;
iii) the real partM′E/V of memory after an electric field double
ramp (circles). The plateau temperature was T1 = 11.2 K and
the plateau duration was t1 = 5000 s.

4 Results

4.1 Isothermal and zero field aging

In previous experiments performed on sample A [21,22],
we have shown that for the field E1 = 0, a given temper-
ature T1 and a given plateau duration t1, the isothermal
variation of the complex capacitance ∆C(T1, 0, t1, f) be-
tween the end t = t1 and the beginning t = 0 of the
plateau, obeys a negative power law of the frequency f
such as

∆C(T1, 0, t1, f) = −N f−ν ,

where the complex amplitude N and the exponent ν de-
pend on T1 and t1 but not on f . It possesses the well
known properties [21] of the susceptibility

χ(ω) = K {cos(πν/2)− i sin(πν/2)sign(ω)} |ωτ |−ν ,

where ω = 2πf is the circular frequency, K is the mag-
nitude and τ is some relaxation time. In particular, the
remarkable property N ′ = N ′′/ tan(πν/2) has been care-
fully checked [21].

We present now the results obtained on sample B.
These new data are similar to those gathered on sam-
ple A. The datapoints for the real part ∆C′ are displayed
as squares on a log-log plot in Figure 1 (upper set). They
lie on a straight line, the slope of which provides the
value of the exponent ν. The numerical analysis gives
ν = 0.135 ± 0.005 when t1 = 5000 s and T1 = 11.2 K.
It was shown in [22] that ν logarithmically decreases with
t1 and linearly decreases with T1.

All the following experiments were performed on sam-
ple B.

Fig. 2. Semi-logarithmic plot of the two ratios ρ′T/V =

M′T/V /∆C′ (squares) and ρ′′T/V =M′′T/V /∆C′′ (diamonds)

and of the ratio ρ′T/U =M′T/U/∆C′ (circles) as a function of
the frequency f . The plateau temperature was T1 = 11.2 K
and the plateau durations were t1 = 5000 s before the double
ramp and t1 = 1000 s before the double jump.

4.2 Memory after a temperature double ramp

We have found that the complex quantityMT/V obeys a
frequency power law

MT/V = D(T1, T2, t1, r)f−δ(T1,t1).

The datapoints for the real part MT/V are displayed as
diamonds in Figure 1 (middle set). They also lie on a
straight line which is nearly parallel to the line for ∆C′.
More precisely, numerical analysis shows that the expo-
nent is δ = 0.145 ± 0.01 for t1 = 5000 s, T1 = 11.2 K,
T2 = 6.0 K and r = 24 mK s−1. We have found that the
exponent δ does not depend on T2 while the amplitude D
does.

From these results we can infer the equality of the
two exponents ν = δ. As a second check of this equal-
ity we have displayed the two ratios ρ′T/V =M′T/V /∆C′
(squares) and ρ′′T/V = M′′T/V /∆C′′ (diamonds) in Fig-
ure 2. They must be equal and independent of frequency
if ν = δ. This is actually seen in the figure. We underline
that, if the equality and the independence are important
checks, the value itself ρ′T/V ∼= 0.55 ∼= ρ′′T/V is contingent
since it depends, in particular, on T2. Finally, we remark
that the equality of the two exponents is not fortuitous
since it persists when T1 and t1 are changed, as it was
shown in [22].

4.3 Memory after a temperature double jump

We have found that the complex quantity MT/U also
obeys a frequency power law. The experiments were per-
formed with T1 = 11.2 K and t1 = 1000 s. In a log-log plot
the data points for the real part M′T/U lie on a straight
line which is, within experimental accuracy, parallel to the
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Fig. 3. Log-log plot of the real part M′E/V (circles) and of
the imaginary part M′′E/V (triangles) of the complex mem-
ory ME/V after an electric field double ramp as a function
of the frequency f . The experimental conditions were those of
Figure 2.

corresponding line for ∆C′. This parallelism show that
these two quantities follow power laws with equal expo-
nents. The ratio ρ′T/U =M′T/U/∆C′ is displayed (circles)
in Figure 2; as expected, it is independent of frequency.
However, the ratio depends on the characteristics T2 and
∆t of the double jump.

4.4 Memory after an electric field double ramp

The data points for the real partM′E/V are displayed as
circles in Figure 1 (lower set) for t1 = 5000 s, T1 = 11.2 K,
E1 = 0, E2 = −4.8 kV m−1 and s = 33 V m−1 s−1. They
lie on a slightly curved line. This means that the complex
quantity ME/V does not obey a frequency power law.
Therefore, in contrast to the case of aging where the ratio
N ′′/N ′ = tan(πν/2) is independent of frequency, here the
ratioM′′E/V /M′E/V of the two parts ofME/V must de-
pend on frequency. This dependence is confirmed by the
following two figures. The two parts M′E/V and M′′E/V
are shown in Figure 3; obviously, they do not fall on two
parallel straight lines. The two ratios ρ′E/V =M′E/V /∆C′
(squares) and ρ′′E/V = M′′E/V /∆C′′ (diamonds) are dis-
played in Figure 4; clearly, they are neither constant nor
equal (if they were constant but not equal, the Kramers-
Krönig relations would be violated).

4.5 Memory after an electric field double jump

The data points for the real partM′E/U are displayed as
diamonds in Figure 5 (lower set), together with those for
∆C′ shown by squares (upper set). They were obtained for
T1 = 11.25 K, t1 = 2000 s, E1 = 0, E2 = −0.6 kV m−1 and
∆t = 80 s. They may both be well fitted with power laws,
but the aging exponent is ν = 0.16±0.01 and the memory

Fig. 4. Semi-logarithmic plot of the two ratios ρ′E/V =

M′E/V /∆C′ (squares) and ρ′′E/V =M′′E/V /∆C′′ (diamonds)
as a function of the frequency f . The experimental conditions
were those of Figure 2.

Fig. 5. Log-log plot of the real part ∆C′ of aging (squares)
with the fit which gives ν = 0.16 ± 0.01 and the real part
M′E/U of memory after a field double jump (diamonds) with
the fit which gives κ = 0.23 ± 0.02 measured as a function
of frequency f . The temperature was T1 = 11.25 K and the
plateau duration was t1 = 2000 s.

ME/U exponent is κ = 0.23±0.02. The ratioM′E/U/∆C′,
follows the power law with the exponent 0.07 (equal to
κ− ν, as expected).

4.6 Comparison

The previous results clearly demonstrate that the pro-
cesses which govern the effect of a temperature sweep and
an electric field sweep are different. As a function of fre-
quency, memory after a temperature sweep follows a power
law with the same exponent that aging while memory af-
ter an electric field sweep either follows a power law with a
different exponent or even a more complicated law. This is
an important feature to take into account when checking
the appropriateness of a model (see Sect. 6).
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Fig. 6. Plot of the difference between two capacitance curves
(an experiment with t1 = 10 000 s and T1 = 13.6 K and the
corresponding reference) recorded as a function of temperature
during heating back from T2 = 5.2 K to above T1. Only the
imaginary part is shown. The measuring frequency was f =
100 kHz and aging has produced the decrease |∆C′′| = 0.76 pF.

5 Further results

Once the conditions of the first step of the experiment (T1,
E1 and t1) are fixed, the free parameters are the amplitude
of variation (∆T = T1 − T2 > 0 or ∆E = |E1 − E2|),
the rate of change (r = 2∆T/∆t or s = 2∆E/∆t) or the
duration ∆t. The role of these parameters is now reported.

5.1 Parameters of the temperature double ramp

The difference between the experiment and the reference
both recorded during heating is the following function of
the temperature T :

MT/V (T ) = [C(T, t1 + (T + T1 − 2T2)/r, f)

−C(T, (T + T1 − 2T2)/r, f)]

− [C(T2, t1 + (T1 − T2)/r, f)

−C(T2, (T1 − T2)/r, f)] .

Its imaginary part is displayed in Figure 6. It presents a
dip at the plateau temperature. The real part exhibits the
same behaviour. The memory amplitudesM′T andM′′T
and the half-widths at half-height δT ′hwhh and δT ′′hwhh were
studied as functions of the amplitude of variation ∆T and
the rate of change r.

The measurements for variable T2 were performed with
t1 = 5000 s, f = 10 kHz, T1 = 11.7 K and r = 2.8 mK s−1.
Figure 7 shows that the variations of the two amplitudes
M′T/V and M′′T/V both start from 0 for T2 = T1 and
increase when T2 decreases. The two half-widths at half-
height δT ′hwhh and δT ′′hwhh are practically equal and they
both start from 0 for T2 = T1 and increase when T2 de-
creases.

The measurements for variable r were performed with
t1 = 5000 s, T1 = 11.7 K and T2 = 5.3 K. The rate of

Fig. 7. Plot of the real partM′T/V (squares) and of the imag-
inary partM′′T/V (diamonds) of the complex memory MT/V

after a temperature double ramp as a function of the tem-
perature T2. The experimental conditions were f = 10 kHz,
t1 = 5000 s, T1 = 11.7 K and r = 2.8 mK s−1. The arrow
indicates T1 on the temperature axis.

Fig. 8. Plot of the real part of the memory M′T/U as a func-
tion of the temperature T2. The experimental conditions were
T1 = 11.2 K, t1 = 1000 s and ∆t = 160 s. The arrow indicates
T1 on the temperature axis. The parabola is only a guide for
the eye.

change r was varied between 1.4 mK s−1 and 22.4 mK s−1.
The data were obtained at f = 10 kHz. As a function of
the lapse of time ∆t elapsed below T1 the real partM′T/V
decreases with∆t as∆t−φ where φ ∼= 0.30. Additionally, it
was shown that the two half-widths at half-height δT ′hwhh
and δT ′′hwhh are equal and constant at the value δThwhh =
(1.95± 0.1) K in these conditions.

5.2 Parameters of the temperature double jump

The double jump measurements were performed with T1 =
11.2 K, t1 = 1000 s and variable T2 or ∆t. The data for
∆t = 160 s are shown in Figure 8 where the real part
M′T/U is displayed as a function of T2. It is large (∼= 1 pF)
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Fig. 9. Plot of the partM′E/V (squares) and of the imaginary
partM′′E/V (diamonds) of the complex memory ME/V after
an electric field double ramp as a function of the squared differ-
ence (∆E)2. The lines are only guides for the eye. The experi-
mental conditions were f = 5.62 kHz, t1 = 5000 s, T1 = 11.7 K
E1 = 0 and s = 33 V m−1 s−1.

for low T2 and goes to 0 if T2 tends towards T1. For fixed
T2 the real part M′T/U decreases when ∆t increases. It
also follows a negative power law of ∆t. These results show
that memory is more efficiently erased by longer sojourns
at higher temperatures.

5.3 Parameters of the electric field double ramp

The difference between the experiment and the reference
both recorded during the field increase is the following
function of the electric field E:

ME/V (E) = [C(E, t1 + (E +E1 − 2E2)/s, f)

−C(E, (E +E1 − 2E2)/s, f)]

− [C(E2, t1 + (E1 −E2)/s, f)

−C(E2, (E1 −E2)/s, f)] .

Its two parts present a dip at the field E1 (see [20]).The
memory amplitudes M′E/V and M′′E/V and the half-
widths at half-height δE′hwhh and δE′′hwhh were studied as
functions of the amplitude of variation ∆E = |E1 − E2|
and the rate of change s.

The measurements for variable E2 were performed
with t1 = 5000 s, f = 5.62 kHz, T1 = 11.7 K, E1 = 0
and s = 33 V m−1 s−1. For a symmetry reason, the nat-
ural variable is not ∆E but (∆E)2. Figure 9 shows that
the variations of the two amplitudes M′E/V andM′′E/V
are not monotonic; they both start from 0 for ∆E = 0,
increase with (∆E)2, pass through a maximum and finally
tend again towards 0 as if a strong electric field erases the
effect of aging. The two half-widths at half-height δE′hwhh
and δE′′hwhh are equal and their common value is propor-
tional to ∆E.

The measurements for variable s were performed with
t1 = 5000 s, T1 = 11.2 K, E1 = 0 and E2 = −4.8 kV m−1.
The rate of change swas varied between s = 8.3 V m−1 s−1

and s = 33 V m−1 s−1. The data obtained at f = 5.62 kHz
as a function of the time ∆t elapsed at a field other that
E1 show that the real part M′E/V varies as ∆t−ψ with
ψ ∼= 0.55. When ∆t is varied the two half-widths at half-
height δE′hwhh and δE′′hwhh stay equal and constant at
the common value δEhwhh = (1.0± 0.1) kV m−1 in these
conditions.

5.4 Parameters of the electric field double jump

The measurements for variable ∆t were performed with
t1 = 2000 s, T1 = 11.2 K, E1 = 0 and E2 = −2.4 kV m−1.
The time elapsed at E2 was varied from ∆t = 40 s to ∆t =
2560 s by factors of 2. The data obtained at f = 10 kHz
show that the real part M′E/U decreases as ∆t−ζ with
ζ ∼= 0.45 in these conditions.

5.5 Comparison of the observed behaviours

Some formal similarities of the memory behaviours has
been noticed. For instance, as a function of the time ∆t
elapsed below T1 or elsewhere that E1 the magnitudes
of the memories MT/V , MT/U , ME/V and ME/U all
vary according to a power law. The half-widths at half-
height relative to the real part and the imaginary part are
equal (this means that, on the one hand, the two curves
M′T/V (T ) and M′′T/V (T ) are affine and, on the other
hand, the two curvesM′E/V (E) andM′′E/V (E) are affine
too); moreover, their common values δThwhh and δEhwhh
are constant.

However, the important point to be underlined again
is their differences, and in first place, that the memory
after a temperature sweep has the same frequency law that
aging while memory after a field sweep has absolutely not.

6 Model

Aging, rejuvenation (evolution opposite to aging that oc-
curs when temperature is lowered) and memory can be
explained by domain growth and wall reconformation. In
fact, a KTN crystal in its ferroelectric phase is made up
of polar domains polarized along one of the eight [111]
directions arranged in such a way that there is no macro-
scopic polarization in absence of biasing field. The walls
which separate the domains have irregular shapes and
their motions are hindered because they are pinned by im-
purities (in particular, by niobium atoms). Indeed, small
portions of the wall can easily move while large ones are
frozen for a long time: the equivalent anchorage strength
depends on the size of the moving portion. Some mod-
els put this distribution of reconformation times on a
more quantitative basis [25,26]. The characteristic mo-
tion time for a portion of wall with area A = ` × ` is
τ(`, T ) = τ∞ exp(Γ (`/a)θ/(kBT )) where Γ is an energy
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scale and θ is an exponent, close to 1 or 2, depending on
the interaction range. The length ` is necessarily limited
by the constraints a ≤ ` ≤ R where a is the lattice pa-
rameter and R is the domain size. This implies that

τ∞ exp(Γ/(kBT )) ≤ τ(`, T ) ≤ τ∞ exp
(
Γ (R/a)θ/(kBT )

)
.

The distribution of reconformation times may be still
broadened by the distribution of the energy Γ . The quan-
tity Γ (`/a)θ can be understood as a barrier energy.

Obviously, all this description can be translated into
the language of the phase space [27,28]. This is done
through the following correspondence: with a small (re-
spectively, large) size reconformation of a wall in the real
space is associated a low (respectively, high) barrier be-
tween metastable states in the phase space.

Isothermal and iso-field aging at T1 and E1 lasts a
rather long time t1 (typically 5000 s) and consequently,
many domains (those with τ∞ exp(Γ (R/a)θ/(kBT1)) ≤ t1)
have enough time to grow: aging is essentially due to do-
main growth.

The temperature sweep is a process with the
shorter duration ∆t. During this lapse of time, do-
main growth is rare and the active processes are the
small size reconformation motions (those such that
τ∞ exp(Γ (`/a)θ/(kBT1)) ≤ ∆t � t1). Let us consider a
reconformation of the small size `. It is the motion be-
tween two configurations of the domain wall which im-
plies only a small number of atoms. During isothermal
evolution at T1 the difference x between the occupation
probabilities of the two configurations has reached the
value x(t1) = xeq + (x0 − xeq) exp(−t1/τ(`, T1)) where
x0 is the initial value while the equilibrium value is
xeq(T1) = tanh(T∆/T1) where 2kBT∆ is the energy dif-
ference between the two configurations. If the plateau du-
ration t1 is long enough the system is in a state close
to equilibrium x(t1) ∼= xeq(T1). Then, if the tempera-
ture is decreased from T1 to T2, configurations which
were nearly equilibrated at T1 must evolve anew since
xeq(T2) = tanh(T∆/(T2)) 6= xeq(T1) and this corresponds
to an increase of the susceptibility; the larger the temper-
ature decrease, the larger the susceptibility increase. This
is rejuvenation. When coming back to T1, the portion of
wall has to evolve back towards the previous equilibrium
xeq(T1) between the two configurations. Therefore, rejuve-
nation is expected to be reversible. However, this schema
is based on a compelling assumption: at the beginning and
at the end of the back and forth process, the system has to
choose between the same two configurations. This implies
that the wall has not moved as a whole or, in other words,
that during the lapse ∆t the domain has not enough time
to grow. This may be put on a more quantitative basis.

If during the temperature sweep after aging at T1

a fraction p (with 0 ≤ p ≤ 1) of the domains have
not enough time to substantially grow (to increase their
size R), when the temperature is back to T1 the wall of
these domains still coincide with their previous positions
and the sequel of their aging is kept [21,22]. On the con-
trary, for the other fraction (1− p) the sequel of aging is
lost. This explains memory (or the loss of memory). The

fraction p is nothing else that the ratios ρ′T/V = ρ′′T/V or
the ratios ρ′T/U = ρ′′T/U of memory and aging. Therefore,
it is inferred that these two effects must have the same
frequency dependence and actually, they have.

In order to make things clearer, let us consider the
limit cases. If ∆t is very long (for instance, because the
rate r is very low), most of the domains have sufficient
time to grow. Then apparent memory, total memory and,
consequently, hidden memory are nearly equal to 0. On
the other side, if ∆t is very short or T2 is very close to T1,
even rejuvenation of small wall portions cannot take place.
Then apparent memory and total memory are equal (and
also equal to aging) and consequently hidden memory van-
ishes. This last case shows the importance of being reju-
venated. This examination of the limit cases shows that
memory is easily observable only in the intermediate case.
However, experiments furnish examples of three different
cases.

Our results displayed in Figures 7 and 8 illustrate the
evolution from the intermediate to the small temperature
sweeps. Figure 7 shows that M′T/V and M′′T/V both
decrease from finite values for T1 − T2

∼= 6 K to 0 for
T1−T2 → 0, for a fixed rate r. Figure 8 shows howM′T/U
decreases from a large value for T1 − T2

∼= 5 K to 0 when
T1−T2 → 0, for a given ∆t. The results concerningMT/V

and MT/U , respectively reported in Sections 5.1 and 5.2,
were obtained for T1 − T2

∼= 6 K (intermediate tempera-
ture range) with variable duration ∆t. The observed be-
haviours are interpreted as the decrease of the fraction p
as a function of ∆t according to the negative power law;
this means that during longer ∆t, more domains are able
to grow.

Experiments performed in the ferromagnetic phase
(between 10 K and 68 K) of the chromium thiospinel
CdCr1.9In0.1S4 [23] illustrate the cases of large and in-
termediate temperature sweeps. The plateau temperature
was T1 = 66.6 K. Memory on χ′′ was totally erased for
T2 = 30 K (large T1 − T2 and therefore long sojourn be-
low T1) but partly recovered for T2 = 64 K (intermediate
T1 − T2). In its spin-glass phase (below 10 K), this com-
pound presents fully restored memory [24], which corre-
sponds to p = 1 in our language.

The present study of memory after a temperature
sweep or memory after an electric field sweep clearly shows
two different behaviours. This raises the question: what
are the fundamental differences between a temperature
sweep and an electric field sweep?

A first answer is obtained in considering the total elec-
tric polarization of the sample. On the one hand, during
all the steps of the temperature sweep experiments no field
is applied. In this case, because the ferroelectric domains
are small enough, their elementary contributions cancel
together: the total polarization is equal to zero (except
weak thermodynamic fluctuations) all along the process.
This means that the flip of a dipole at a domain fron-
tier must be compensated by the inverse flip of another
dipole. On the other hand, in the field sweep experiments
the total polarization which is null during aging (because
E1 = 0) must become different of zero when the electric
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field is applied. In this case, collective flips of dipoles (cor-
responding to volume change of domains), inducing a net
polarization of the sample, occur. This analysis shows that
the processes in action in the two cases are different.

A second answer is given by taking into account the
frequency dependences. It was shown [26,28] that the
alternative susceptibility χ reflects the distribution of
lifetime τ . More precisely, the density function P (τ) ∝
τσ∞/τ

1+σ corresponds to the susceptibility χ(t, ω) ∝
(ωt)σ−1 for ωt � 1. The result was obtained for spin-
glasses but the argument is easily transposed to the
present case. This has two consequences for our experi-
ments: i) the frequency dependence ∆C(t, ω) ∝ ω−ν of
aging in absence of electric field implies that the den-
sity function is P (τ) ∝ τν−2 when no field is applied
(therefore, P (τ) decreases less rapidly than τ−2; this is
a sufficient condition for aging [28]); ii) the frequency
dependence of memory after a field sweep, which inte-
grates aging in the variable field, indicates that the density
function P (τ) is changed by the field. This is in contrast
with the assumption often used for spin-glasses which puts
that the effect of field H on a sample with magnetization
M induces a uniform shift M ·H of the energy of the
metastable states and keeps unchanged the jump rates
over the barriers.

This remark transforms the initial question into an-
other: why the distribution of τ is changed? If tempera-
ture is varied the active reconformations take place (if the
growth of R(t) is negligible) on the domain walls, where
they are. The applied field E is coupled to the polariza-
tion P of every domain. P is along one of the eight [111]
directions while E is applied along a [100] direction of the
cubic phase. The domains with P ·E > 0 grow; the do-
mains with P ·E < 0 slim. In both cases, some parts of
the walls move, due to the stress p = ∇(P ·E) ∼= ∇(P)·E.
Therefore, during the field sweep the reconformations take
place on renewed walls and, as a consequence, the prob-
ability density P̃ (τ, t) to find the system at time t in a
metastable state of lifetime τ is not the same in a variable
field and in absence of field. The distribution change and
the collective flips of dipoles could be at the origin of the
different behaviours observed in our experiments.

7 Conclusion

We have studied aging and memory in disordered fer-
roelectric crystals by the means of alternative dielectric
constant measurements over three frequency decades. We
have found that memory after a temperature sweep or
memory after an electric field sweep leads to two differ-
ent behaviours: the former has exactly the same frequency
dependence that aging while the latter has not.

Our results enter very well the frame of a model which
attributes the time dependent effects to growth and wall
reconformation of polarization domains hindered by the
static random fields generated by intentional impurities.
We suggest that the observed difference between temper-
ature sweep and electric field sweep does not demand a
drastic modification of the model but is only due to the

dependence of the reconformation time distribution P (τ)
on the applied field. More experimental and theoretical
works are needed in order to check these hypotheses.

We thank S. Ziolkiewicz who has grown the KTN crystals and
J.-P. Bouchaud and É. Vincent for fruitful discussions.
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